Sabtu, 19 Januari 2013

Matriks Diagonal, Segitiga, dan Matriks Simetris

Matriks Diagonal, Segitiga, dan Matriks Simetris


Matriks Diagonal
Sebuah matriks bujursangkar yang unsur-unsurnya berada di garis diagonal utama dari matriks bukan nol dan unsur lainnya adalah nol disebut dengan matriks diagonal. Contoh :
\begin{bmatrix}
1 & 0\\
0 & -5\\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0\\
0 & -5 & 0\\
0 & 0 & 1\\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
\end{bmatrix}
secara umum matriks n x n bisa ditulis sebagai
\begin{bmatrix}
d_1 & 0 & \cdots & 0\\
0 & d_2 & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & d_n\\
\end{bmatrix}

Matriks diagonal dapat dibalik dengan menggunakan rumus berikut :
D^{-1}=\begin{bmatrix}
1/d_1 & 0 & \cdots & 0\\
0 & 1/d_2 & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & 1/d_n\\
\end{bmatrix}
DD^{-1}=D^{-1}D=I
jika D adalah matriks diagonal dan k adalah angka yang positif maka
D^{k}=\begin{bmatrix}
d_1^k & 0 & \cdots & 0\\
0 & d_2^k & \cdots & 0\\
\vdots & \vdots &  & \vdots\\
0 & 0 & \cdots & d_n^k\\
\end{bmatrix}
Contoh :
A=\begin{bmatrix}
1 & 0 & 0\\
0 & -3 & 0\\
0 & 0 & 2\\
\end{bmatrix}
maka
A^5=\begin{bmatrix}
1 & 0 & 0\\
0 & -243 & 0\\
0 & 0 & 32\\
\end{bmatrix}

Matriks Segitiga
Matriks segitiga adalah matriks persegi yang di bawah atau di atas garis diagonal utama nol. Matriks segitiga bawah adalah matriks persegi yang di bawah garis diagonal utama nol. Matriks segitiga atas adalah matriks persegi yang di atas garis diagonal utama nol.
Matriks segitiga
\begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14}\\
0 & a_{22} & a_{23} & a_{24}\\
0 & 0 & a_{33} & a_{34}\\
0 & 0 & 0 & a_{44}\\
\end{bmatrix}
Matriks segitiga bawah
\begin{bmatrix}
a_{11} & 0 & 0 & 0\\
a_{21} & a_{22} & 0 & 0\\
a_{31} & a_{32} & a_{33} & 0\\
a_{41} & a_{42} & a_{43} & a_{44}\\
\end{bmatrix}
Teorema
  • Transpos pada matriks segitiga bawah adalah matriks segitiga atas, dan transpose pada matriks segitiga atas adalah segitiga bawah.
  • Produk pada matriks segitiga bawah adalah matriks segitiga bawah, dan produk pada matriks segitiga atas adalah matriks segitiga atas.
  • Matriks segitiga bisa di-inverse jika hanya jika diagonalnya tidak ada yang nol.
  • Inverse pada matriks segitiga bawah adalah matriks segitiga bawah, dan inverse pada matriks segitiga atas adalah matriks segitiga atas.
Contoh :
Matriks segitiga yang bisa di invers
A =\begin{bmatrix}
1 & 3 & -1\\
0 & 2 & 4\\
0 & 0 & 5\\
\end{bmatrix}
Inversnya adalah
A^{-1}=\begin{bmatrix}
1 & -3/2 & 7/5\\
0 & 1/2 & -2/5\\
0 & 0 & 1/5\\
\end{bmatrix}
Matriks yang tidak bisa di invers
B =\begin{bmatrix}
3 & -2 & 2\\
0 & 0 & -1\\
0 & 0 & 1\\
\end{bmatrix}

Matriks Simetris
Matriks kotak A disebut simetris jika A = A^T
Contoh matriks simetris
\begin{bmatrix}
7 & -3 \\
-3 & 5 \\
\end{bmatrix}
\begin{bmatrix}
1 & 4 & 5\\
4 & -3 & 0\\
5 & 0 & 7\\
\end{bmatrix}
Teorema
  • Jika A dan B adalah matriks simetris dengan ukuran yang sama, dan jika k adalah skalar maka
A^T adalah simetris A + B dan A - B adalah simetris kA adalah simetris (AB)^T = B^T A^T = BA

Jika A adalah matriks simetris yang bisa di inverse, maka A^{-1} adalah matriks simetris.
Asumsikan bahwa A adalah matriks simetris dan bisa di inverse, bahwa A = A^T maka :
(A^{-1})^T = (A^T)^{-1} = A^{-1}
Yang mana membuktikan bahwa A^{-1} adalah simetris.

Produk AA^T dan A^TA
 (AA^T)^T =  (A^T)^TA^T = AA^T dan (A^TA)^T = A^T(A^T)^T = A^TA
Contoh
A adalah matriks 2 X 3
A = \begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix}
lalu
 A^TA = \begin{bmatrix}
1 & 3 \\
-2 & 0\\
4 & -5 \\
\end{bmatrix}\begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix} = \begin{bmatrix}
10 & -2 & 11\\
-2 & 4 & -8\\
-11 & -8 & 41\\
\end{bmatrix}

AA^T = \begin{bmatrix}
1 & -2 & 4\\
3 & 0 & -5\\
\end{bmatrix}\begin{bmatrix}
1 & 3 \\
-2 & 0\\
4 & -5 \\
\end{bmatrix} = \begin{bmatrix}
21 & -17 \\
-17 & 34\\
\end{bmatrix}
Jika A adalah Matriks yang bisa di inverse, maka AA^T dan A^TA juga bisa di inverse

0 komentar:

Poskan Komentar